HomeNotesJNTUKJNTUK R19 B.Tech CSE 2-1 MFCS Material/ Notes PDF Download

JNTUK R19 B.Tech CSE 2-1 MFCS Material/ Notes PDF Download

Students who are studying JNTUK R19 CSE, IT Branch, can check and download Unit wise R19 2-1 MFCS Material PDFs below.

JNTUK R19 B.Tech CSE 2-1 MFCS Material – Units

No. Of UnitsName of the Unit
Unit – 1Mathematical Logic
Unit – 2Set Theory, Functions
Unit – 3Combinatorics, Number Theory
Unit – 4Recurrence Relations
Unit – 5Graph Theory


Mathematical Logic: Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof, Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.


Set Theory: Sets: Operations on Sets, Principle of Inclusion-Exclusion, Relations: Properties, Operations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hasse Diagrams,

Functions: Bijective, Composition, Inverse, Permutation, and Recursive Functions, Lattice and its Properties, Algebraic Structures: Algebraic Systems, Properties, Semi Groups and Monoids, Group, Subgroup and Abelian Group, Homomorphism, Isomorphism.


Combinatorics: Basis of Counting, Permutations, Permutations with Repetitions, Circular and Restricted Permutations, Combinations, Restricted Combinations, Binomial and Multinomial Coefficients and Theorems,

Number Theory: Properties of Integers, Division Theorem, Greatest Common Divisor, Euclidean Algorithm, Least Common Multiple, Testing for Prime Numbers, The Fundamental Theorem of Arithmetic, Modular Arithmetic, Fermat’s and Euler’s Theorems


Recurrence Relations: Generating Functions, Function of Sequences, Partial Fractions, Calculating Coefficient of Generating Functions, Recurrence Relations, Formulation as Recurrence Relations, Solving Recurrence Relations by Substitution and Generating Functions, Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations


Graph Theory: Basic Concepts, Graph Theory and its Applications, Sub graphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs, Multigraphs, Bipartite and Planar Graphs, Euler’s Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim’s and Kruskal’s Algorithms, BFS and DFS Spanning Trees.


Please enter your comment!
Please enter your name here

Latest News